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From grid cells and visual place cells
to multimodal place cell: a new
robotic architecture
Adrien Jauffret *, Nicolas Cuperlier and Philippe Gaussier

ETIS, UMR 8051/ENSEA, Université Cergy-Pontoise, CNRS, Cergy, France

In the present study, a new architecture for the generation of grid cells (GC) was
implemented on a real robot. In order to test this model a simple place cell (PC)
model merging visual PC activity and GC was developed. GC were first built from a
simple “several to one” projection (similar to a modulo operation) performed on a neural
field coding for path integration (PI). Robotics experiments raised several practical and
theoretical issues. To limit the important angular drift of PI, head direction information
was introduced in addition to the robot proprioceptive signal coming from the wheel
rotation. Next, a simple associative learning between visual place cells and the neural
field coding for the PI has been used to recalibrate the PI and to limit its drift. Finally,
the parameters controlling the shape of the PC built from the GC have been studied.
Increasing the number of GC obviously improves the shape of the resulting place field.
Yet, other parameters such as the discretization factor of PI or the lateral interactions
between GC can have an important impact on the place field quality and avoid the need
of a very large number of GC. In conclusion, our results show our GC model based on
the compression of PI is congruent with neurobiological studies made on rodent. GC
firing patterns can be the result of a modulo transformation of PI information. We argue
that such a transformation may be a general property of the connectivity from the cortex
to the entorhinal cortex. Our model predicts that the effect of similar transformations
on other kinds of sensory information (visual, tactile, auditory, etc...) in the entorhinal
cortex should be observed. Consequently, a given EC cell should react to non-contiguous
input configurations in non-spatial conditions according to the projection from its different
inputs.

Keywords: neural network, entorhinal cortex modeling, grid cells, place cells, mobile robot

1. Introduction

In robotics, getting a robust localization is crucial to achieve navigational tasks. Indeed, Simultane-
ous Localization and Mapping (SLAM) is a problem that has concentrated much of the research
effort in autonomous robot navigation for more than 20 years (Chatila and Laumond, 1985;
Durrant-Whyte and Bailey, 2006). The oldest approach proposed to solve SLAM is the probabilis-
tic one, based on the Extended kalman Filter (EKF) (McElhoe, 1966). The complexity of EKF is
quadratic with respect to the landmark’s number and thus it behaves badly in large environment.
This algorithm is also very sensitive to bad associations. To cope with these limitations, numerous
methods have been proposed. One can refer to Thrun et al. (2005) and Thrun (2008) for a review.
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Taking inspiration from nature, bio-inspired robotics pro-
poses robotic control architectures based on models of animal’s
spatial cognition. The goal of this approach is both to better
understand the cognitive processes underlying animals behav-
iors and to endow robot architectures with robust and adaptive
behaviors. Neuro-Ethological studies of mammals performing
navigation tasks show that a wide variety of sensory modali-
ties can be combined and processed to yield position informa-
tion (Etienne and Jeffery, 2004). The discovery of place cells
(PCs) in the rat hippocampus (HS) (O’Keefe and Nadel, 1978) has
emphasized the encoding of a neural representation of allocentric
space used by mammals. These cells exhibit place related activi-
ties (place field) and are thought to be used to navigate. Other
neurons found in mammal brain seem to act as an internal com-
pass. These cells fire in relation to the animals directional heading
and are named Head direction cells (HD cells). HD cells have
been first identified in the post-subiculum (Taube et al., 1990) and
then they have been found in several structures like in the ante-
rior thalamic nuclei (Taube, 1995) and in the retrosplenial cortex
(Chen et al., 1994). For a short and recent review on HD cell fir-
ing properties and the neuronal structures where they have been
found, one can refer to Winter and Taube (2014). More recently,
the entorhinal cortex (EC) has been the focus of attention since
the striking discovering of grid cells (GC) in the dorso-lateral
band of the medial EC (dMEC) (Hafting et al., 2005). When
recorded in sufficiently large environments, these cells present
spatial firing fields forming a regular hexagonal pattern or a grid
that tiles the environment explored by the rat. HD cells and con-
junctive GC have also be reported in dMEC (Sargolini et al.,
2006). In rodents, GC activities are anchored to external land-
marks. But grids also persist in their absence. In dark condition,
the average firing rate and spacing of GC seem unchanged but a
decrease in the spatial correlation of the rate maps underlines a
dispersal or displacement of the vertices (Hafting et al., 2005).

Numerous models of GC have been proposed since 2005.
They mainly differ by the way they code positional information,
how this information is updated when the animal moves and
how the read out of this code is performed (Zilli, 2012). A first
class of models encodes positional information as phase differ-
ence between oscillators and updates it via frequency modulation
(Burgess et al., 2007). Read-out mechanism in these models is
commonly based on temporal interference between the oscilla-
tors. A second class uses an attractor network (i.e., continuous
attractor network) to code spatial information (Fuhs and Touret-
zky, 2006; McNaughton et al., 2006), where the attractor is shifted
in the network according to HD input signal. Most of these
models use a direct read-out mechanism (location of the activity
bubble). Finally a few models use the firing rate of single cells as
coordinate where the read-out is performed as a spatial interfer-
ence mechanism (Gaussier et al., 2007; Hasselmo and Brandon,
2008). These two models differ by the way they update the net-
work : it is based on a firing rate modulation in Gaussier et al.
(2007) and based on a frequency modulation in Hasselmo and
Brandon (2008). Recently hybrid models relying both on a contin-
uous attractor network for positional information encoding and
on the interference mechanism to read-out have been proposed
(Welday et al., 2011; Mhatre et al., 2012). Despite a huge amount

of theoretical models, little is known about the requirements
needed to replicate GC activities in real robotic experiments, how
these models behave with real world noisy data. Indeed, most
computational models of biological neuronal network are often
tested using world models which have little resemblance to natu-
ral stimuli (movements in a discrete space, use of a uniform noise
in a continuous environment, alignment of robot movement with
the grid directions, recalibration with ad-hoc stimuli). Only a very
few of these works were tested on robotic platform (Milford et al.,
2010). Using robots allow to test how brain models react to envi-
ronmental constraints close to those the animals have to face (for
instance how to keep coherent and precise grid-like properties?).
In this paper, our robot is used as a tool to study in “real world”
conditions the coherence and the dynamics of HD cell, GC, and
PC models in a simple yet real navigation task and to address
the following questions: What are the constraints implied by a
bio-inspired model closing the sensory-motor loop? At a behav-
ioral level, does the generalization capability of the resulting place
recognition allows learning an homing behavior or a route as a
sensory-motor attraction basin?

We present in this paper a robotic implementation of a model
exhibiting GC firing patterns. This model is based on a residue
number system (Gaussier et al., 2007). Unlike most GC mod-
els, we propose that GC are not processing path integration (PI)
but take this information as input instead. Indeed, several mod-
els explain how animals can compute PI (Hartmann and Wehner,
1995; Wittmann and Schwegler, 1995; Arleo and Gerstner, 2000).
There are also evidences for the involvement of parietal cortices
in PI (Parron and Save, 2004). In our model, as in Wittmann and
Schwegler (1995), long-term path integration is performed over a
one dimensional neural field. This kind of representation is well-
suited to sustain homing behavior as it gives a direct access to
the homing vector. We argue in this paper that the spatial grid
pattern of GC activities can arise from a compression of this PI
information.

Our experimental results on robots underline the key role
played by visual inputs to maintain GC firing pattern over long
periods. Without visual cues, GC firing activity does not corre-
spond to a grid pattern but seems scrambled. A simple mecha-
nism exploiting visual information can be used to recalibrate path
integration in order to keep cumulative errors sufficiently low to
obtain the typical GC firing pattern. Several experiments to study
the impact of the model parameters and the effect of the different
error sources over the grid cell pattern have been performed.

PC can be easily generated from GC (Gaussier et al., 2007),
using a simple competitive learning combining the activities of
several GC. This paper shows that a few parameters can con-
trol the size of the generated place field and thus control the
generalization capability of place recognition. To test on a real
robot the interest of the PCs obtained from GCs a simple fusion
model has been used to combine them with visual place cells
(using a simple conditional association mechanism). These visual
place cells look like the large and noisy cells observed in the ven-
tral medial entorhinal cortex (vMEC) (Quirk et al., 1992) and
could play a key role in hippocampal cells activity (Poucet et al.,
2014). Combining multimodal place cells from both visual place
cell and GC inputs brings more robustness for the navigation in
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difficult environments as already shown by behavioral studies on
animals and robot localization works (Filliat, 2003). We simulta-
neously recorded the activities of visual place cells (VPC), place
cells generated from grid cells (PredVPC) and multimodal place
cells (MPC) to analyze and compare the contribution of these
different sources of information. Finally, experiments, we show
how this simple model of MPC behaves when a conflict occurs
between both inputs (when the robot is kidnapped and passively
moved to a new location).

In following sections, we first describe the different parts of
our model and how they interact. We then present the results of
experiments performed to analyze the effects of the model param-
eters and to study the interactions between the different neural
networks involved in our model. Finally, this paper ends with a
discussion and some predictions related to the fact the GC would
not be the result of a specific system devoted to navigation but
the result of a general compression property from the associative
cortical areas to the hippocampal system.

2. Materials and Methods

In this section, the different neural networks necessary to com-
pute robust GC are described. Three networks developed in pre-
vious works will be introduced: a model of VPC, a model of HD
cells (that act as an internal compass) and a neuronal network
relying on this internal compass to perform PI. A mechanism,
based on associative learning between VPC and PI cells, will be
used to limit the path integration error. Next, our GC model
based on a compression of the path integration (PI) activity will
be presented. Finally, a simple model of MPC merging GC and
VPC activities will be proposed in order to evaluate the GC model
in real life experiments. To simplify the simulations, in all our
neural networks, the firing rate of the neurons will be repre-
sented by a normalized firing rate ranging from 0 to 1 (maximal
frequency of activation).

2.1. Modeling Place Cells from Visual Information
Among other things, vision (as an exteroceptive modality) allows
the animal to localize himself by the extraction of distant land-
marks. Different models of biological vision-based navigation use
the azimuth of the landmarks (Cartwright and Collett, 1983) or
the conjunction of landmark identifications and their azimuths
(Gaussier and Zrehen, 1995). A place can be recognized using
only visual information as a configuration of landmarks and their
angular position (either relative or absolute). In the following, we
will refer to these cells as Visual Place Cells (VPCs). VPC could
result from a biologically plausible model of the hippocampus we
developed in previous works (for more details and equations one
can refer to Gaussier et al., 2002; Banquet et al., 2005; Cuperlier
et al., 2007). The VPC could be locate in the superficial layer of the
ventral medial entorhinal cortex which receive inputs from the
visual association cortex (through the perirhinal and post-rhinal
cortices Agster and Burwell, 2013).

In our VPC model, a panoramic image is analyzed sequentially
in order to extract salient points (landmarks) in the scene. An
embedded pan-tilt camera allows the capture of multiple images
corresponding to a 360◦ panorama (15 images per panorama). A

low resolution gradient extraction convolved with a difference of
gaussian filter (σ1 and σ2 parameters) allows to highlight a set of
salient points (curvature points) in the scene (see Figure 1A). An
internal attentional mechanism is used to focus on each salient
point. In our model, landmarks are made from local views corre-
sponding to a small circular image centered on each focus point.
A log polar transform mimicking the projection of the retina onto
the primary cortical areas is used to improve the pattern recog-
nition against small image rotations and scale variations. The
neural network learns and recognizes a place as a constellation
of landmarks and their azimuths in the visual scene. In the sim-
plest versions the azimuth is computed from a magnetic compass
but can be replaced by a visual compass (Delarboulas et al., 2014)
or even be replaced by the relative angle between the considered
landmark and another landmark (Gaussier et al., 2002).

Local views correspond to “what” information coded in the
perirhinal cortex or in other areas of the ventral visual pathway
of the rat temporal cortex (Kolb and Tees, 1990). The azimuths
of these local views (“where” information) are provided by the
parietal cortex through the parahippocampal region. Azimuths
are coded on a neural field using a diffusion mechanism centered
on the preferred direction, providing generalization capabilities
(Georgopoulos, 1988). The merging of “what” and “where” infor-
mation may be performed in the superficial layer of the entorhi-
nal cortex or in the post-rhinal cortex (Suzuki et al., 1997; Burwell
and Hafeman, 2003).

This model of VPC is able to categorize and to recognize dif-
ferent places in the environment. Activities of the different place
cells depend on the recognition level of the landmarks. Robust-
ness comes from the large number of local views extracted (75)
and the only use of a competition mechanism between place cells:
only the rank in the competition matters. The absolute value
of VPC activity is not significant by itself while it can be high
or low overall, depending on visual changes that appear in the
environment.

Activity of VPC shows a peak for the learned locations, even in
outdoor conditions (see Figure 1B). The PC generalize quite cor-
rectly over large distances (2–3 m indoor and 20–30 m outdoor).

2.2. Modeling Head Direction Cells and Path
Integration Mechanism
In contrast with most models, we propose that the GC activity
results from the projection and merging on the dMEC neurons
of extra hippocampal PI activity.

Our PI model is directly inspired from Wittmann and Schwe-
gler (1995) and Etienne (1998) (see Figure 2A) and it makes the
hypothesis that HD cells provide the directional heading compo-
nents to the path integrator (see also the model of Kubie and Fen-
ton (2009) using the same assumption). This is consistent with
several studies (Frohardt et al., 2006; Valerio and Taube, 2012)
showing HD cells seems to be critical for navigation tasks based of
PI. The HD cells are supposed to act as an internal compass since
these cells discharge as a function of the direction in which the
animal’s head points in the horizontal plane of the environment,
independent of the animal location. But heading direction are
not sensitive to Earth’s geomagnetic field, they are rather depen-
dent on landmarks (vision) and self-motion cues (vestibular and
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FIGURE 1 | (A) Visual Place Cells model: A pan camera picks up 15
images (320 × 240 pixels) over a 360◦ panorama. Each gradient image is
convolved with a difference of gaussian filter (DoG). Local maxima of the
resulting image correspond to points of interest on which the system
focuses on to extract local views and their corresponding azimuths. A
Visual Place Cell (VPC) learns to recognize a specific landmark-azimuth
constellation from the merging of perirhinal and parahippocampal

structures (Pr-Ph). An action is associated with this PC. This association
is learned by a least mean square algorithm. Then, the system
automatically moves in the learned direction when the associated PC
wins. (B) Activity of 3 visual place cells recorded on a linear track in a
real outdoor environment. The different maxima of activity correspond to
the learned positions of the associated cells. Our architecture provides
good generalization properties since activities present large place fields.

proprioception). In Delarboulas et al. (2014) a detailed model of
HD cells for robotics experiments is proposed. This model uses
a dynamic neural field to merge both allothetic (a visual compass
and/or a magnetic compass) and proprioceptive (robot odome-
try) information in order to compute the current heading of the
robot.

In the present paper, path integration (PI) is performed on
a discretized neural field of N neurons from the temporal inte-
gration of information related to small robot displacements (see
Gaussier et al., 2007). We suppose that the neural field (D) for
PI has the same topology and size (N neurons) than the input
field (V) coding for the direction of the current movement. This
V field takes as input the HD cells activities and codes it such
as its activity has a non-negative cosine shape. At each time step
(ts), the heading of the robot is coded on a circular and uniform
neural map (V) covering 360◦.

Vi(φ(ts)) = 1 + cos(φ(ts) − θi) (1)

θi = −2π
i

N
(2)

The maximum of activity on V is centered on the direction of
the current movement (φ(ts)). Activity of the neurons (Di) of
the field performing the PI is simply computed as the sum of
its previous activity (by mean of recurrent connections) with the
corresponding activity of neuron Vi:

Di(ts) = [Di(ts − 1) + αVi(φ(ts))]+ (3)

[x]+ =
{

x if x > 0
0 otherwise. (4)

α is a gain factor used to scale the length of the current move-
ment on the neural field (0 < α < 1). Neurons in the field
D have a maximum of activity for the direction of the global
movement. The activity level of this neuron is proportional to

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2015 | Volume 9 | Article 1

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Jauffret et al. Modeling grid cells on robots

FIGURE 2 | Model of grid cells from path integration. (A) Linear speed
and absolute orientation can be used to characterize movement unit and so
generate global path integration on a neural field. (B) Path integration neural
field is used to build grid cell activities without any Cartesian map. Activities
of randomly chosen pairs of neurons Di in the field θ are discretized on other
fields E. Those fields are compressed by simple modulo projections on other

fields M. The conjunction of 2 codes of 2 projections is sufficient to obtain
grid cells. (C) A recalibration mechanism allows the system to limit a
cumulative error on this field. This mechanism learns to associate the
maximum activity (WTA) of the path integration field with the most active
visual place cell (VPC) via a least mean square learning algorithm. It allows the
system to recalibrate itself when it later recognizes known visual place cells.

the distance traveled from the starting point (where the last
reset occurs). Proof and examples of this PI mechanism can be
found in Gaussier et al. (2007). Plausibility of this model, the use
of a cosine function (that can be replaced by a gaussian func-
tion or any other function having a bell curve activity), as well
as the problem of the saturation of the field were discussed in
Gaussier et al. (2007). The present paper does not intent to dis-
cuss further these issues. We simply make the assumption that
a PI mechanism can compute a global path vector on a pop-
ulation of neurons and that it can serve as main input of our
GC model.

When tested on a robot, PI errors mainly occur when the robot
is turning (angular errors coming from the HD cell activities). To
limit this issue, displacement distance is obtained directly from
the robot odometry (for distance information) while a magnetic
compass is used to obtain the orientation information since odo-
metric information alone was too noisy on our robot to obtain
an usable path integration. Relying on this multimodal path inte-
gration allows limiting the angular error on the robot odometry.
Note that, even when considering the ideal case of no noise on the
distance and angle measures, previous simulation results show
that the model used for PI introduces errors due to the discretiza-
tion of the angles (size of the neural fields). These errors quickly
degrade regular pattern activities by spreading over neighbor-
ing areas so much that the global activity appears randomly
distributed over space (Gaussier et al., 2007).

A solution consists in recalibrating the PI at well-known loca-
tions thanks to visual cues or any salient information in the
environment (Etienne and Jeffery, 2004). Thus, in our previous
model (Gaussier et al., 2007) a reset of the PI field can be per-
formed when a binary signal r is set to one. This r signal can
be triggered when a given VPC exhibits a strong activation. In
this paper, we added the possibility to force the value of neuron
activities in the PI field to a previously learned state associated
with the current winning VPC (see Figure 2C). In our model,

each time the robot recruits a new VPC (learns to recognize a
new place) it associates this cell with the current PI activity. Later,
the recognition of the same place allows to set the PI activity to
the previously learned values and thus limits cumulative errors.
The proposed mechanism is quite similar to the one proposed
by Strosslin et al. (2005). It mainly differs by the way PI PI is
taken into account. Our model relies on a normalized least mean
square algorithm (NLMS) (Haykin, 2002) and is tested on a real
robot. It is important to note that a reset occurs on PI field each
time the first learned VPC wins the competition since this cell has
been associated with the initial state of the PI field (set to zero).
This place can be defined as a goal place to reach in a homing
behavior.

PI recalibration occurs when a place is well-enough recog-
nized. This leads to the definition of level of confidence in place
cells recognition. To be efficient, the recalibration zone has to
be narrow. In our experiments on GC, we choose to trigger a
recalibration signal according to thresholds on VPC activity. A
recalibration happens when the recognition level of the winning
VPC satisfies 2 conditions: its activity must be over a first thresh-
old (absolute threshold) and the difference in activity with the
second most activated VPC must be over a second threshold
(relative threshold). These 2 conditions allow avoiding recalibra-
tion in ambiguous places. Threshold values can be found in the
Appendix in Supplementary Material. An even narrower recali-
bration zone can be easily obtained by using an other categoriza-
tion input (like the recognition of ultrasound sensors profile at
the goal place) in conjunction of the VPC recognition.

2.3. Modeling Grid Cells from Extra Hippocampal
Path Integration
Our model of GC is based on various modulo’s operators applied
on PI (see Figure 2B). The activity Di(t) of a neuron belonging to
the PI field (associated with direction θi) is discretized over a new
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field of neurons:

Ei
j(ts) =

{
1 if j = floor( Di(ts).NE

Dmax
)

0 otherwise.
(5)

Where Dmax is the maximum value of the distance that can be
computed by the neural field and NE is the number of neurons
on each field used to discretize the analog activity on the PI field.
i is the index of the neuron from which is read the D field to gen-
erate the corresponding E field. Then a modulo operator is used
to compress the field Ei by projection in a field (Mn) of smaller
size:

Mn
k (ts) =

{
1 if k = arg maxj(Ej(ts)) mod MGn

0 otherwise. (6)

with MGn the value of the modulo used to build the grid n. Val-
ues of the MGn factors represent a distance in an abstract unit
corresponding to Dmax

NE
. The sizes of M fields used in our experi-

ments are given in annexe. The conjunction of 2 of these modulo
projections (Mn fields in Figure 2B) is sufficient to obtain a set
of GC. Gaussier et al. (2007) have shown that learning these con-
junctions is equivalent to learn a “AND” configuration since only
two inputs are active. In our robotic model we thus used this
simplified equation (without learning):

Gn(ts) = Mn
1 (ts) ⊗ Mn

2 (ts) (7)

with Mn
1 one of the two fields (belonging to a given field Ei) and

Mn
2 the other one. Gn

l is the activity of the lth GC neuron in the
layer corresponding to modulo n. The spacing of the grid is deter-
mined by the modulo value MGn and the radius of the firing field
by the discretization factor of PI neurons.

The absolute difference between θ1 (corresponding to a given
neuron in D) and θ2 (corresponding to the other neuron chosen
in D) determines the grid orientation. The compression factor of
the modulo projection (corresponding to the ratio between input
and output group) determines the grid spacing. Each neuron on
the output layer of a given modulo generates a grid of the same
orientation and spacing but with different phases. Figure 2B
shows an example with three layers of GC corresponding to three
different modulo values.

2.4. Building Robust Multimodal Place Cells from
Visual Cells and Grid Cells: A Conditional
Association
In Gaussier et al. (2007), authors have proposed to generate PC
from GC as the result of a pattern recognition process of the grid
activity. A competitive learning mechanism (an online Winner
Takes All in our work) similarly to the one proposed in Rolls
et al. (2006) is used. One surprising result is that the generated
place fields are very narrow as compared to the VPC obtained
from the landmark ∗ azimuth constellation while using the same
competitive learning mechanism. In the model presented in Sec-
tion 2.2, all grids present binary fields (activated or not) so that
the pattern generated by the conjunction of 3 grids is a three-
steps stair shaped (see result in Figure 4). We provide simulation

Experiments (6, 7) that extend our previous works by studying
two key parameters controlling the generated place fields. Exper-
imental results in Section 2.5.4 show that place field of PC can
be controlled by these two parameters but larger GC networks
(more than 1000 neurons) are required. To overcome this lim-
itation and keep a number of simulated GC neurons that is still
compatible with real-time requirement of the robot control archi-
tecture, we chose to keep only three different networks of GC
with binary output. To obtain PC with a place field size adapted
to robot navigation, local lateral connections on each map of
GC were added in order to allow some activity. These connec-
tions have positive weights decreasing as a function of the dis-
tance to the departure neuron. These new inputs allow our GC
to provide analog responses (ε [0;1]) instead of binary outputs.
This diffusion mechanism can be seen as the result of a convo-
lution of the binary output of each GC with a gaussian mask.
They allow to activate more than one neuron in each grid layer
and thus give to the system more generalization capabilities (see
Figure 4). The model described in the following is relying on GC
with non-binary activity.

As indicated previously, hippocampal place cells (or place cells
in the dentate gyrus) are also driven by visual inputs. One solu-
tion is then to combine the VPC, presented in Section 2.2 (driven
only by visual inputs) and the new neural mechanism exploiting
PI to model GC. In this section, we propose a simple merging
mechanism that benefits of both modalities and is particularly
useful when vision leads to an ambiguous recognition.

We choose to model hippocampal PC by learning associations
between VPC states and GC states. Associations are performed
by a normalized least mean square algorithm (NLMS) that tries to
predict the visual state (unconditional stimulus) from GC activity
(conditional stimulus). Finally, a simple weighted sum is used to
merge the activity of the VPC with the predicted activity from the
GC (see Figure 3). This sum allows studying the contribution of
one modality in the MPC response 1. The activity of a multimodal
place cell MPCm is given by:

MPCm(ts) = η VPCm(ts) + (1 − η)PredVPCm(ts) (8)

with VPCm the activity of the corresponding VPC, PredVPCm
the activity of the corresponding place cell predicted by the grids
(NLMS output), η ε [0;1] a weighting factor and m ε [0;M] the
index of the cell. We fixed in this paper the weighting factor η

equals to 0.5 giving thus both sources the same weight.
Recently, it has been highlighted that even if the medial

entorhinal cortex (with its GC) and the ventral medial entorhi-
nal cortex are both involved in hippocampal place cell activities,
they could play a different role according to ambient light condi-
tions (luminous or dark environments) (Poucet et al., 2014). The
impact on MPC activity of the parameter η has to be done in a
further study.

1In robotics, merging such multimodal information to get a robust spatial response
is usually performed with an Extended kalman Filter (McElhoe, 1966) or a particle
filter (Thrun et al., 2001).
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FIGURE 3 | A conditional association to merge visual and grid information. Associations between visual place cells (VPCs) as unconditional stimulus and place
cells predicted by grid cells (PredVPCs) taken as conditional stimuli.

FIGURE 4 | Activity of place cells predicted by grid cells (model
relying on a WTA)—Impact of the diffusion mechanism on GC
networks (Experiment 6). (A) PredVPC from binary grid cells (without
lateral connections). Top : Activity of the 6th PredVPC is recorded in
space along a multi-room path (path1 described in Section 2.5.2). A red
color means a high activity and a black one indicates a low activity.
Location of the cell numbered 6 in the path is marked by an arrow.
Bottom: Activity of the 6th PredVPC is recorded in time. On the x axis,
iterations are proportional to the distance the robot has traveled (constant
speed). The place field is a thin three-steps stair shaped. (B) PredVPC
from grid cells with lateral connections (positive weights that decrease as
a function of the distance with neighboring neurons). Top : Activity of the
6th PredVPC is recorded in space along the same path than in panel (A).

A red color means a high activity and a black one indicates a low activity.
Location of the cell numbered 6 in the path is marked by an arrow. These
connections allow to spread activity on neighboring grid cells. Bottom:
Activity of the 6th PredVPC is recorded in time. On the x axis, iterations
are proportional to the distance the robot has traveled (constant speed).
PredVPCs show larger place fields allowing generalization capabilities. (C)
Multiple place fields with PredVPCs from the binary grid cells (no
diffusion). This figure shows the identity of the highest PredVPC (resulting
from a Winner Takes All competition mechanism) superimposed to the
path. At each time step a colored dot is plotted. Each color identifies the
PredVPC with the highest response at the given place. It exhibits a lot of
recognition errors (same color for different locations) that can be easily
removed by adding the diffusion mechanism (see Figure 11).

The activity of a place cell predicted by GC is given by:

PredVPCm(ts) =
L−1∑
l=0

wl(ts)Gl(ts) (9)

Where wl is the weight of the synapse coming from the
corresponding GC Gl.

Evolution of this weight is given by the normalized
least-mean-square learning rule:

wl(ts) =⎧⎪⎪⎨
⎪⎪⎩

0 if ts = 0

wl(ts − 1) +

λm(VPCm(ts − 1)−
PredVPCm(ts − 1))Gl(ts − 1)∑L−1

l= 0 Gl(ts−1)2 otherwise (ts > 0).

(10)
λm = λ.γ.βm (11)

With λm a local learn factor depending on a constant λ ε [0;1] , a
binary neuromodulation factor γ (0 or 1, controlled by human)
and a binary winner-takes-all βm so that:

βm =
{

1 if m = m′ with m′ = argmaxm(VPCm)
0 otherwise. (12)

2.5. Experimental Setup and Description of the
Different Experiments
2.5.1. Robotic Platform
All robotic Experiments (1–5, 8–11) presented in this paper were
performed on a Robulab 10 from Robosoft. It is a 40 cm large
and 1 m tall robot (see Figure 5A). 10 ultrasound sensors (6 in
front and 4 at the back of the robot) detect obstacles at 40 cm dis-
tance. These sensors are only used for obstacle avoidance (at the
exception of the Experiments 3b, 5). The robot is equipped with
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FIGURE 5 | (A) Robotic platform used to perform our experiments. (B) Grid
cells Experiments (1–5): Our 1 m high, 40 cm wide robot is freely moving in a 4
m diameter hexagonal enclosure using random movements and obstacles
avoidance. The system learns by a few place-action associations how to
return to a “home” location (marked by a red paper on the floor), that allows
the robot to recalibrate itself. An internal time counter pushes the robot to go
recalibrate itself every X minutes (X depending on the experiment), in order to
limit cumulative errors of path integration. (C) Multiroom environment used to
study place cells response (Experiments 8–11). The robot learns 19
regularly-spaced places (each 1.5 m), starting from a room, passing through a
corridor and ending on a second room.

2 driving wheels centered on each side and 2 free wheels (one in
front and one at the back of the robot) so that it can turn on itself.
Robot displacements are controlled by sending a linear speed
and a rotational velocity to the robot hardware controller (see
Experiment Parameters in Appendix for values)(see Figure 5).

A camera with a field of view of 90◦ (fish-eye lens) and a reso-
lution reduced to 320×240 pixels is mounted on top of the robot.
A pan mechanism allows the camera to take 15 images cover-
ing a 360◦ visual panorama of the surrounding environment. A
Difference Of Gaussian (DoG) filter is applied on each image to
highlight salient points in the scene. Overlaps between successive
images allow avoiding side effects. The system picks up 5 land-
marks per image, representing a total of 15 × 5 = 75 landmarks
for each panorama.

A magnetic compass is also used to get an absolute angu-
lar reference and is used as an input of our HD cell model. Its
accuracy is around 1◦. As seen before, a visual compass (Gio-
vannangeli and Gaussier, 2007; Delarboulas et al., 2014), and an
inertial sensor could replace it for a more biologically plausi-
ble solution (but it would make the analysis of the results more
difficult).

Our control architecture relies on a real time neural net-
works simulator named Promethe (Matthieu et al., 2008) running
on an Intel I5 (2.40 Ghz) CPU embedded in the robot. Work-
ing stations are only used for remote control and debugging
purpose.

2.5.2. Robot Environment
The first Experiments (1–5) aim at studying our GC model
described in Section 2.2. Typical experiments made on rodents
consist in recording the activity of GC in dMEC while the rat,

around 20 cm large, is free to move in a circular enclosure
of 2 m diameter (Hafting et al., 2005). In order to run our
experiments in almost similar conditions, our robot, around 40
cm large, randomly moves in an hexagonal arena of 4 m diameter
(see Figure 5B). Position and simulated GC are simultaneously
recorded during all experiments. A basic sensory-motor loop is
used to perform obstacles avoidance so that the robot stays inside
the hexagonal playground.

The Experiments (6, 7) study the place cells responses in a sim-
ulated environment. In a last set of Experiments (8–11), the real
environment is composed of two rooms connected by a corridor
(see Figure 5C). Different parts of our laboratory are visually sim-
ilar so that our vision-only based recognition system is subjected
to perceptual ambiguities. This is one of the typical problems
encountered while the robot tries to visually localize itself in a
cue-redundant environment. For analysis purpose, we forced the
robot to learn 19 regularly-spaced places (each 1.5 m) on a multi-
room path. The learned path (named path1) starts in one room,
passes through a corridor and ends in a second room very similar
to the first one.

2.5.3. Study of the Impact of Path Integration
Recalibration Mechanism Over Grid Cells Activity
Pattern
This section describes Experiments (1–5) conducted to study our
model of GC described in Section 2.2.

2.5.3.1. Experiment 1: random exploration without
recalibration
In this first experiment, the robot exploration behavior is only
based on random movements and the calibration mechanism is
not used. This test simply intends to replicate previous observed
effect of PI cumulative errors on GC firing pattern. It under-
lines the need for a mechanism based on other modalities to
correct or to limit those errors and maintain stable GC firing
pattern.

Recalibration of path integration via a periodic homing
behavior. It is well-known that reliable visual landmarks in the
environment allow to update and correct for errors that occur
during PI process (Etienne, 1992; Gallistel, 1993). In these exper-
iments, the recognition of a given place in the arena is used as
a specific landmark (identity and azimuth couples). This mecha-
nism provides a PI update. At first, a conditional learning mecha-
nism allows associating a specific place cell with the concomitant
activity in the PI field. Next, the activation of the same place cell
induces an activity on the PI field corresponding to the activity
present during learning. This activity will mash up the ongo-
ing path integration activity and can be considered as a simple
recalibration procedure.

A homing behavior is used to force the robot to return to the
recalibration location. The robotic architecture for this robust
homing behavior is based on sensory-motor associations rely-
ing on vision (Figure 6) (Gaussier and Zrehen, 1995; Gaussier
et al., 2002; Giovannangeli et al., 2006). A visual attraction field
is learned around the homing location, allowing the robot to
converge autonomously into the resetting area. A simple periodic
drive triggers the homing behavior and thus allows the robot to
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FIGURE 6 | Homing mechanism based on a simple
sensory-motor loop relying on vision. (A) A particular action (a
direction in our case) is associated with each winning visual place
cell (VPC). This association is learned by a least mean square
algorithm. The system is then able to move in the learned

direction when the associated place cell wins the recognition
competition. (B) This simple mechanism allows the system to
exhibit robust behaviors by the use of only few sensory-motor
associations (path following, homing task). An attraction bassin
emerges from the sensory-motor dynamic.

go to a recalibration place by itself every minute. The drive is reset
each time the goal is reached, allowing the robot to switch back
to a random exploration strategy 2.

2.5.3.2. Experiment 2: impact of the recalibration rate
In this experiment, we test the impact of the time elapsed between
successive recalibrations over the GC firing pattern. The robot
explores the arena for 30 min. Robot linear speed is 20 cm/s and
the arena is 4 m large. Hence, the robot needs 20 s to cross the
arena from side to side. This implies that the period between
two recalibrations must be longer than 20 s to obtain data from
everywhere in the environment. Conversely, previous experi-
ments showed that the firing pattern of our GC was scrambled
if the period between two recalibrations was longer than 5 min.
Thus, we tested the following recalibration timing : 30 s, 1 min, 2
min, and 4 min.

2.5.3.3. Experiment 3: impact of the recalibration
location
We study here the impact of this recalibration place inside the
enclosure by comparing the results obtained for two recalibra-
tion locations. Since the response field of the VPC is quite large
as compared to the arena size, another information was used to
reduce the reset zone. We chose to use a colored piece of paper
(format A4) that could only be detected by a color sensor located
below the robot (between its two wheels). This piece of paper is
similar to some reward the animal can receive when arriving at
some goal location. Similarly to animal experiments, the robot
reward (i.e., the red piece of paper) is chosen so that the robot
cannot use it to control its motions. The robot camera cannot see
the floor near the robot and when the robot is far away the piece
of paper, it is too small on the floor to be perceived by its low-
resolution vision system. Each experiment runs for 30 min. Every
minute, the homing behavior is triggered. The red paper stuck on

2A video showing a 30 min robotic experiment replicating the Hafting experiment
of 2005 is available at this web address: http://www.etis.ensea.fr/~neurocyber/
Videos/homing/30min_hafting_expiment.avi

the floor represents the virtual goal location. In the first Exper-
iment (3a), the tests were performed with a goal (recalibration
area) at the center of the arena. In the second Experiment (3b),
nothing is changed excepted that the red piece of paper (recali-
bration area) is set in a corner defined by the two walls and the
attraction field is learned to converge to this corner. Note that in
this experiment, the ultrasound sensor profile is learned and used
to restrict and to better define the recalibration zone.

2.5.3.4. Experiment 4: random exploration
Like in the previous experiment, in the first 30 min of this exper-
iment the robot explores the arena and a homing behavior is
triggered every minute to recalibrate PI. But after these first 30
min, visual information and homing behavior are disabled and
the robot randomly moves for another 30 min. GC firing pat-
tern is measured after 33, 36, 39, 42, 45, 48, 51, 54, 57 min, and
finally 1 h. This experiment differs from Experiment 1, since the
robot randomly moves only after a complete exploration of the
environment and the establishment of a stable GC pattern.

2.5.3.5. Experiment 5: calibration without vision
In this experiment, the robot explores first entirely the arena for
30 min. During this first phase, it can recalibrate its PI using the
homing behavior as in the previous experiment but the activity of
the used to define the recalibration location is the result of a sim-
ple conditioning rule between visual information, information,
ultrasound sensor profile and GCs activities. Next, the robot runs
again for 30 min in the same arena, but the visual inputs are dis-
abled and the recalibration of the place cell activity is only driven
by GC activities and the recognition of the learned ultrasound
profile.

2.5.4. Analysis of the Place Cells Responses
This section describes experiments conducted to study the model
described in Section 2.4. In a first set of experiments, place cells
result from the same simple WTA learning of GC that in Gaussier
et al. (2007) and the impact of several parameters on the GCs
responses are studied in simulation. In a second set of experi-
ments, place cell responses of the model showed in Figure 3 are
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studied using a real robot evolving in an environment composed
of two rooms connected by a corridor (part of our laboratory).
The activities of the different place cell populations (VPC, Pred-
VPC, MPC) are recorded while the robot is passively moved in
this environment and after a kidnapping test (i.e., moving the
robot to a previously learned distant place). Note that in all this
second set of robot localization experiments, PredVPC neurons
rely on GC with analog response (see Section 2.4). Note also that
each VPC enough activated can trigger a PI recalibration (i.e.,
each VPC is associated with a PI value).

From grid cells to place cells. Here, we study how GCs can
induce place cells relying only on PI. These simulations are
performed in a square environment (500×500 states).

2.5.4.1. Experiment 6: experiment on learning a place cell
from 3 different grid resolutions
Following our previous approach, a simple WTA learning is used
to learn GC activity profile and to give rise to like activity. One
can refer to Gaussier et al. (2007) for details and equations.

2.5.4.2. Experiment 7: experiment on the effect of
parameter values over the generated place field
Here, the generalization performances of these cells are studied.
As previously, the same competitive learning mechanism is used.
Our studies show that at least two parameters can impact the
size of the place fields: the discretization factor and the number
of simulated GC. These experiments show the effect of different
parameter values on the generated place fields.

Place cell responses. These tests underline the behavior of
our different populations of place cells in a visually ambiguous
environment.

2.5.4.3. Experiment 8: experiment on place cell responses
(VPC, PredVPC, MPC) over a 23 meters long path
In this experiment, the recognition level of one MPC and the
corresponding PredVPC and VPC are recorded while the robot
moves passively over a 23 m long path (path1).

2.5.4.4. Experiment 9: experiment on the generalization
properties over a path
In order to test the robustness and the generalization capabil-
ities of our MPC, a navigation experiment on a 25 × 15 m
environment has been performed (see Figure 5C). The learned
path (path1) starts in one room, passes through a corridor and
ends in a second room very similar to the first one. Next, the
robot followed 5 different paths parallel to the learned path,
passively moved by a remote control. Those five paths allow
to cover a large space near the learned path, in order to test
the generalizations properties of the model (multimodal place
field size). To show the deterministic nature of the results,
we repeated the experiment a dozen of times in a changing
environment (ambient light and furniture changing, persons
moving).

Solving the Kidnapping problem. Previously, place cell activ-
ities were analyzed along a continuous path in the environ-
ment. In the following study how our simple model of MPC

behaves when a conflict occurs between both inputs. Sev-
eral kidnapping events were performed: the robot was trans-
ported (lifted and blindfolded) from different position along
path1 to an other location near this same path. When the
robot is at the chosen location, the different inputs are enabled
again and the robot is remote-controlled to perform a path
along (or near) path1. path1 is learned before VPCs, Pred-
VPCs, and MPCs activities are recorded during the kidnapping
experiments.

2.5.4.5. Experiment 10: robot kidnapped to another room
The robot is remote-controlled and learns to localize itself along
path1. Next, it is kidnapped (blindfolded and lifted) and moved to
another place along the path1 (in room2). Then, the robot tries to
localize itself while being remote-controlled to perform the end
of path1 again.

2.5.4.6. Experiment 11: robot kidnapped near the
beginning of the path
The robot learns again to localize itself along path1. When the
robot reaches the final position in room 2, it is kidnapped and
moved again to its initial position in the first room. It then tries
to localize itself while being remote-controlled to perform a path
near the learned path.

3. Results

3.1. Results Relying on the Impact of Path
Integration Calibration on Grid Cells Activity
Patterns
3.1.1. Results of Experiment 1
As expected, cumulative errors on PI quickly degrade regular pat-
tern activities by spreading over neighboring areas so much that
the global activity appears randomly distributed over the room
like in Gaussier et al. (2007) (see Figure 7A). Each cell presents a
blurred activity with no visible tessellation because of the 30 min
error accumulation. PI errors come from the discretization of the
field, the precision of the internal compass (HD cells) and errors
over the displacement length. However, neurons of the GCs net-
work present periodic and more coherent activity when 5 min
slices of experiment are considered. As indicated before, a mech-
anism based on other modalities is needed to limit or correct this
drift. In order to solve this problem we decided to associate the
PI pattern with VPC activity.

3.1.2. Results of Experiment 2
The recalibration rate depends on the precision of the PI sys-
tem and the size of the environment (see Figure 8A). The results
show that if the recalibration is performed every 30 s, the grid
pattern is sharp but the robot cannot explore uniformly the envi-
ronment. It stays close to the calibration area. On the contrary,
if the calibration is triggered every 4 min, the environment is
well-covered, but the activity of the grids starts to be blurred. For
the next experiments, the calibration rate is set to 1 min since this
duration is a good compromise ratio between precision and the
surface that can be covered by the robot.
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FIGURE 7 | Experiments made with a real robot randomly moving
in an hexagonal enclosure during 30 min. Robot paths are shown in
black, with superimposed single grid cell activity in red. (A) Grid cell
activity obtained with our neural model without any recalibration
(Experiment 1). Top, result of 30 min of navigation without recalibration for
3 different modulo [projection of 60 neurons on, respectively 4 (top), 9
(middle), and 25 neurons (bottom)]. We show 3 randomly chosen cells for
each modulo. Activity fields are blurred due to path integration errors.
Bottom, 5 min slices of time allow to show periodic firing field. (B) Same
experiment but with a periodic calibration in the center every minute
(Experiment 3a). The origin of the path integration is set in the center of

the environment. Top, an attraction field is learned around the center
allowing the robot to autonomously converge in the calibration area every
minute. Left, 6 different visual place cells are learned to generate a
correct attraction field. Right, the recalibration map shows a relatively
large resetting area. Bottom, results present more coherent regular
patterns than without calibration but the precision can not be smaller than
the calibration area. (C) Same experiment but with a periodic calibration
in a corner of the arena every minute (Experiment 3b). A thinner resetting
area is obtained with bordered recalibrations because of the physical
edges of the environment that give more precision. Regular hexagonal
patterns of different spacing, orientations, and phases are shown.

3.1.3. Results of Experiment 3
The results presented on Figure 7 — demonstrate that the pre-
cision of the generated grids highly depends on the size of the
recalibration area which itself depends on the VPC properties
and on the competition mechanism to select the winning cell.
Location of this recalibration area can really matter. If a VPC
has been learned near the center of the environment, its place
field can be really larger than if it has been learned near a bor-
der of the environment. As a matter of fact, at the center of
the environment (far away from the landmarks), one elemen-
tary displacement generates smaller azimuth variations than near
the border of the environment where the landmarks are usually
located. Figures 7B,C indicate that the winning zone of a VPC is
more precise if it has been learned near a border.

In the first experiment, with recalibrations in the center of
the arena, the results show an error field relatively large since it
represents almost 20% of the arena width.

The second experiment tries to solve the precision problem
by using walls of the arena to define a smaller recalibration
area. Indeed, the corner of 2 walls represents a natural sin-
gularity where it is easy to converge. This technique uses the
conjunction of ultrasound sensors activity profile and place cells
recognition to increase precision. Ultrasound sensors activity
profile is learned and categorized at the recalibration location and
helps to reduce errors introduced by vision-only based recalibra-
tion. During the homing behavior, the reset area is then more
precisely defined in the corner of a room since the edges of the

enclosure help to define a precise area thanks to the dynamical
properties of the obstacle avoidance mechanism used and thanks
to the help of the proximity sensors bringing new data to dis-
criminate between places near the borders and the other places.
The results present well-defined pattern of GC for a recalibration
point near a corner. As before, the different grids share the same
spacing when using the same modulo and the same orientation
for a given discretization factor but the results are here more vis-
ible. We can clearly see on Figure 7C that each cell produces a
grid activity with a specific phase.

3.1.4. Results of Experiment 4
Without recalibration, results show a degradation of the grid pat-
tern over 30 min of random movements (see Figure 8B). Blurred
activity appears progressively as a gaussian noise depending of
the elapsed time. The activity pattern of the GCs seems totally
random after 15 min.

3.1.5. Results of Experiment 5
Results presented in Figure 8C highlight the important role of
vision in maintaining precise and coherent grid-like activities
since in the absence of any external cues, the GCs loose progres-
sively their angular precision. The robot still tries to recalibrate by
using the available information (PI and ultrasound activity pro-
file) but the fast drift of the PI results in a mismatch in the corner
used for calibration. It results in a 60◦ rotation of the grid pat-
tern around the center of the arena. Because of inaccurate border
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FIGURE 8 | (A) Influence of the time between each homing behavior on
grid cell activities (Experiment 2). We made 4 Experiments on a real
robot randomly moving during 30 min in the hexagonal enclosure.
Activity of a grid cell (red dot) superimposed on a robot path (black
dot) for different homing periods. From left to right, the robot go
recalibrate itself every 30 s, 1 min, 2 min, and 4 min. The shorter the
homing period is, the better the pattern activity is defined. But the
robot needs a least 1 min to uniformly cover the entire environment.
(B) Influence of the PI shift on the grid-like pattern in a purely
random navigation of 30 min (Experiment 4). As for previous
experiments, the robot starts a random navigation in the enclosure
and uses sensory-motor associations to go recalibrate itself every
minute in a corner. After 30 min, we inhibit the homing strategy and
the system continues moving for another 30 min without any
calibration. Results show, respectively the resetting area (for the first

30 min), and the activity of a grid cell every 3 min after inhibiting
calibration. Blurring activity appears as a gaussian noise with time. (C)
Influence of the PI shift on the grid-like pattern without vision
(Experiment 5). After 30 min of random navigation with a calibration
every minute, the robot is blindfolded. It keeps moving for another 30
min without vision. It keeps trying to go back home every minute but
only with PI and ultrasound sensors profile. A calibration of PI occurs
only when the right place cell, computed from grid cells, is winning
and when head-on proximity sensors (US) rise a high-level threshold.
Left, resetting area for the entire experiment duration. Reset activity
appears distributed in space on the border of the environment. Right,
activity of a grid cell every 3 min after blindfolding. Spreading activity
appears to be the result of a rotation of the initial grid pattern.
Because of inaccurate border calibrations, grid cell activity shifts in
orientation but keeps its original spatial periodicity.
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calibrations, GC activity shifts in orientation but keeps its origi-
nal spatial periodicity. Moreover, after 20 min of experiment, the
cumulative errors in distance integration become so high that the
calibration place is perceived outside the arena. Consequently,
the robot cannot recalibrate for the last 10 min of experiment.

3.2. Results Relying on Place Cells from Grid
Cells
3.2.1. Results of Experiment 6
The activity of a place cell built from the learning of a binary GC
pattern exhibits a very narrow place field (see Figure 4A). Note
that such a place field is a 3-stepped stair because of the three
different grid resolutions (3 modulo).

3.2.2. Results of Experiment 7
Results obtained with a large number of GC indicate that the dis-
cretization of the PI field (number of neurons of field Ei used
to code the value of Di) has a direct impact on the place field
width (see Figure 9.1). The number of GC used to generate place
cells affects the field resolution (see Figure 9.2). The more GC the
system uses, the better the resolution of the place field is.

3.2.3. Results of Experiment 8
Figure 10 presents the recognition activity for different PC pop-
ulations (VPC, PredVPC, MPC) while the robot is moving
between two large rooms in our laboratory. The recognition level
for one VPC shows high activity in two different places because of

cue redundancies (see Figure 10A). Activity of the corresponding
PredVPC cell exhibits a well-defined shape at the learned posi-
tion (see Figure 10B). The merging of PredVPC and VPC defines
Multimodal Place Cells (MPC) allowing the system to solve the
visual ambiguities of the VPC (see Figure 10C).

3.2.4. Results of Experiment 9
In this experiment, the robot learns 19 regularly-spaced posi-
tions (each 1.5 m), starting from one room, passing through a
corridor and ending in a second room. VPCs, PredVPCs, and
MPCs activities are recorded for 5 different paths (see Figure 11).
Recognition of places from visual information alone shows great
generalization capabilities but presents ambiguities. Grid recog-
nition for the same paths leads to smaller fields than visual place
fields but does not suffer any ambiguity. However, a place can-
not be recognized correctly with the PC computed from the GC
if the robot is too far away from the recalibration area (because
of the cumulative PI error). Multimodal recognition obtained by
merging VPCs and PredVPCs demonstrates the benefit of both
modalities. This lead to well-defined PC even if the robot is far
from the learned path.

3.2.5. Results of Experiment 10
This experiment (see Figure 12.1) showed that the VPC quickly
localize the robot after the kidnapping event when the grid recog-
nition stays totally wrong until a PI recalibration occurs. Every

FIGURE 9 | Influence of discretization and number of grid cells on
place fields in simulation (Experiment 7). On each figure, the x axis
represents space (the distance from the starting point in an abstract unit)
while the y axis represents the activity of a place cell (a WTA learns the
conjunction of grid cells, see Section 2.4). (1) Influence of the discretization
factor on place fields width. Place cell obtained from grid cells depending on
different parameters [4 different setups (GCs) corresponds to the number of

grid cells used, mod refers to the different modulo and D refers to the
discretization factor]. The discretization factor has a direct impact on the field
width. Note that the smaller the discretization factor, the higher the noise. (2)
Place cell field obtained from grid cells with different modulo and 2 different
numbers of cells for the same discretization factor (D = 60). (A) 3 grid cells.
(B) 4235 grid cells. Increasing the number of GCs tends to reduce the noise
level and enhances the resolution of the generated place field.
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FIGURE 10 | Example of recognition for one cell (Experiment 8). On
the upper part: Activity plotted on one path (red = 1, black = 0). On the
lower part: Same activity plotted in time. (A) Visual place cell 9 shows
maximum activity on the learned place (1) but also on place (2) because of

cue redundancies. (B) Odometric place cell 9 (PredVPC) exhibits a
well-defined shape at the learned position (1) and no ambiguity. (C) Merging
the 2 allows the system to disambiguate vision. Results present a correct
activity for the multimodal place cell (MPC) 9.

FIGURE 11 | Navigation in an indoor environment (Experiment 9). (A)
Experimental setup: The robot learns 19 regularly-spaced places (each 1.5
m), starting from a room, passing through a corridor and ending on a second
room. (B) Visual recognition obtained for 5 different paths. Each color is
associated to one visual place cell. Results show great generalization
capabilities but present ambiguities (dotted circles. Numbers correspond to

indexes of perceived places.). (C) Grid recognition for the same paths. Grid
fields are smaller but without any ambiguities. A place is not recognized if the
robot is too far away from the learned place. (D) Multimodal recognition
obtained by merging visual and grid place cells. The synergy of both
modalities shows well-defined areas even if the robot is far from the learned
path.

time the activity of the winning VPC is not well-defined, the
robot must run typically 5 meters before being able to recali-
brate its PI. Nevertheless, MPC exhibit coherent results even if
the recalibration signal does not yet appear.

3.2.6. Results of Experiment 11
In this experiment (see Figure 12.2), the MPC are able again to
quickly recognize the correct location thanks to the visual infor-
mation. Recalibration of the PI can occur earlier because of the
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FIGURE 12 | (1) Experiment 10. Solving the kidnapping problem: The
robot is remote-controlled from the starting point (t0) in a first room to
(t1) in our laboratory. Next, it is kidnapped (blindfolded and lifted) and
moved to an other room (t2). Then, the robot tries to localize itself while
it is remote-controlled to the end (t1–t4). Left - Visual recognition during
the experiment. The visual recognition system instantly localizes the robot
after the kidnapping event. Middle - Grid recognition during the same
experiment. Once kidnapped, grid recognition stays totally wrong since

there is no recalibration signal coming from vision. The signal coming
from vision (t2) allows to recalibrate the path integration field to retrieve a
coherent grid recognition. Right - Multimodal recognition shows coherent
results even if recalibration signal does not yet appear. (2) Experiment 11.
Solving another kidnapping problem: The robot passively moves from t0
to t1 following the first path (1). It is then kidnapped and moved to the
initial room (t2). It then tries to localize itself while being remote-controlled
on the second path (2).

good generalization properties of the previously learned VPC.
When the robot is in an already known and highly recognized
place, it recalibrates its PI field to a previously learned value. As
previously mentioned, this recalibration mechanism allows the
system to keep consistency between VPC and PredVPC and pre-
vents from being lost near learned locations. Moreover, thanks
to the merging mechanism, the perceived location does not stay
wrong after a displacement of more than 2 m. Indeed, even if the
PredVPC activity decreases progressively while getting far from
learned places, the VPCs do not suffer from drift problems and
can delete the errors induced by the GC system.

4. Discussion

4.1. Grid Cell Model
Following our previous works on bio-inspired robot architecture
for navigation (Cuperlier et al., 2007; Gaussier et al., 2007), we
proposed in this paper a model of GC that does not require prior
buildup of a Cartesian map of the environment. Contrary to other
models based on attractor dynamics or models based on interfer-
ences, this model does not require complex neuronal properties

for the entorhinal cortex (no need of a particular neuron dynam-
ics as in Fuhs and Touretzky, 2006; McNaughton et al., 2006).
Moreover, our model differs from other works by several other
points listed above.

4.1.1. Grid Cells from Modulo Projection of Path
Integration
First, the GC pattern observed is only resulting from the pro-
jection and merging (product) on the dMEC neurons of PI PI
information. These projections simply act as various modulo’s
operators applied on path integration involve complex opera-
tions. To verify whether a strict modulo operator is necessary
to obtain GC activities, we performed simulations of EC neu-
rons that were learned autonomously by a network connecting
the dMEC granular cells to a limited and random number of
connections with the neurons associated to the PI field. The
results show that a wide variety of activity patterns, including
grid-like patterns, can be obtained by relaxing the constraints
on the model (prime constraints over the modulo operator or
imperfect modulo projection: see Figure 13 and Gaussier et al.,
2007).
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From a neurobiological point of view, it seems that EC is not
the main place where PI is computed, but is instead a place where
a generic code is formed to allow better recognition or predic-
tion. More precisely, we argue that the neurons in EC provide
a code that compresses other cortical information so that the
hippocampus would not need to perform specific computation
for place recognition but would use generic neuron properties
(scalar product and competition) to learn and recognize com-
plex cortical states involving several cortical areas. For instance,
the same modulo operation could be performed both on the
azimuths of visual landmarks and on the neurons coding the
recognition (identity) of visual landmarks. A product of these
signals can then be learned by the hippocampus. A recent work
(Killian et al., 2012) has shown that GC patterns could also be
observed in primate by a simple visual scene exploration without
any locomotion. Moreover, even if in this paper our work was
focused on a spatial task, we can hypothesize that other cortical
inputs could also benefit from the same process (like odors or
sounds). Thus, our model predicts that code based on the prod-
uct of several modulo projections is a general property of EC that
is not specific to spatial information. Activity of a given neuron of
EC (X(t)), receiving i different signals from n different modalities,
can be given by:

X(t) = �(Signali(t) mod scalei(t))with i ∈ 1, 2, ...n. (13)

The different patterns activating a given neuron should
be uncorrelated both temporally and spatially to minimize
ambiguity.

4.1.2. A Grid Cell Model Based on Extra dMEC Path
Integration
Second, our model contrasts with most of the other GC models
as it does not assume PI is performed by GC themselves from
HD cells information or velocity information. Instead, we make
the assumption that long range PI could be stored in other brain

areas. At least two brain regions could generate such an extra hip-
pocampal PI: the retrosplenial cortex (Cho and Sharp, 2001) and
the parietal cortex (Etienne and Jeffery, 2004; Parron and Save,
2004).

Note also that the recalibration of the PI can be processed
outside the entorhinal cortex. The retrosplenial cortex may be
that place since several works show that this area is involved in
the association process between visuospatial and idiothetic infor-
mation, namely “it places visual context information within a
framework of idiothetic knowledge” (Cooper and Mizumori, 1999;
Mizumori et al., 2001).

4.1.3. Getting Stable Grid Cell Patterns from Robotic
Experiments
Experiments (1–5) performed on the recalibration mechanism
can give several clues about how to setup correctly the model
to perform other sensory-motor navigation tasks (like place-
action sequences). Note that even if calibration is needed to
maintain a correct grid pattern over a long period, GC pat-
terns appear complete in the robot first visit of an environment.
Indeed, our simulated GC present periodic and coherent activity
when we only consider 5 min slices of experiment (see results in
Section 3.1).

Moreover, we addressed the question of the calibration fre-
quency and the choice of the recalibration point. Experimental
results of Section 3.1 indicate that our robot must recalibrate after
running at most 48 m. Hence in a large environment, the recali-
bration has not to be too frequent. Indeed, recalibration can occur
when a place of the sequence is well-enough recognized. This
leads to the definition of a level of confidence in the visual place
cells recognition. Experiment 3 on the location of the goal under-
line the same key point, since GC activities are better defined if
the calibration zone is small.

One could notice the qualitative nature of our results. Indeed,
trying to perform many experiments on a real robot is quite long

FIGURE 13 | Variety of grid cell activity obtained in a
simulated environment for different parameters. Grid cells
are computed by random modulo projections. Activity of 27
cells randomly picked from a population of 30,000 cells. The

simulated robot explored the square environment for 20,000
iterations. Resulting patterns exhibit all kind of activities
(including grid-like with different spatial periods, phases,
gridness, and orientations).

Frontiers in Neurorobotics | www.frontiersin.org 16 April 2015 | Volume 9 | Article 1

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Jauffret et al. Modeling grid cells on robots

and difficult if one consider all technical aspects such as robot
velocity, battery life-time, dynamic environment, and complex-
ity of the hardware architecture. In this article, we decided to
focus on robotic experiments that illustrate our model. Future
work will focus on quantifying the quality of the present model by
providing precise statistical analyses for the different experiments
presented in this article.

4.1.4. About Path Integration Calibration Sources
As expected, errors in PI accumulate due to slipping wheels and
discretization errors. This prevents correct GC activities after 4
or 5 min of exploration. Hence, other information have to be
taken into account to correct these errors. Therefore, we chose to
exploit visual information via a simple conditioning mechanism
linking VPC and GC to limit PI error. One other possibility could
be the use of border cells that have been discovered by Solstad
et al. (2008). Those cells are mainly activated when the animal
reaches a limit of its environment like a wall and they seem to be
related to the tactile sense (a transparent wall also activates them).
An interesting solution could be provided by a recent work that
presents an attempt to take into account border cells activities in
order to reduce the PI drift (Cheung et al., 2012).

4.1.5. How Does This Model Take Into Account
Biological Results
Robotic Experiments (2, 3) show that we can find param-
eters (homing frequency and goal location) allowing taking
into account some results found in experiments made on

rats. Namely, results of Figure 14 present rotational symme-
try and auto-correlation values quite close to those found on
animals (see Sargolini et al., 2006). Parameters of the model
can control orientations, spacing and phases of the generated
grids.

It has been shown that when visual cues are present, they exert
a strong control over the alignment of grids: rotating a cue card
on the wall of a cylinder causes grid patterns to rotate by the same
amount (Hafting et al., 2005). Our model can not directly repli-
cate these findings. This is mainly due to the use of a magnetic
compass device in input of our HD cell, but we strongly suggest
that replacing this magnetic device by a visual one should allow
to provide similar results (Giovannangeli and Gaussier, 2007;
Delarboulas et al., 2014). More experiments have to be done on
this.

Contrary to the robotic model proposed in Milford et al.
(2010), we do not need to take into account recent findings
about the conjunctive coding of position, orientation and veloc-
ity as reported in Sargolini et al. (2006). First, conjunctive and
non-conjunctive GC do not seem to be located in the same
area of EC and are not present in the same proportions. Sec-
ond, we presented in Gaussier et al. (2007) a more complete
model describing a loop between hippocampus, entorhinal cor-
tex and the subiculum area that could explain conjunctive activ-
ity exhibited by dMEC neurons. More work has to be done
to discuss in details these data but the architecture we pro-
posed in this paper seems very appropriate to perform such
study.

FIGURE 14 | (A) Firing field of grid cells with 3 different spatial frequencies
(one cell from each layer). Left row, robot path (black) with superimposed grid
cell activity (red); right row, rate-coding map (obtained by a gaussian
convolution on cell activity). Red= 1, dark-blue= 0. (B) Periodic structure of
grid cells activity shown in panel (A). Left row, autocorrelation matrix for the
rate map. The color scale is from blue= −1 (anticorrelated) through green= 0
(no correlation) to red= 1 (fully correlated). Distance scales are 4 times bigger

than for the rate map. Right row, angular periodicity of the autocorrelation
matrix. We rotated the autocorrelation map from 0 to 180◦ (step of 1◦) and
computed the pearson correlation between each rotated matrix and the
original one. Grid structure appears as a sinusoidal modulation of this
correlation, with peaks at multiple of 60◦. Correlations are 1 at 180◦ because
of the mirror symmetry. (C) Histogram of gridness score for 12 cells recorded
in all 3 layers of our MEC model.
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4.2. From Grid Cells to Place Cell
4.2.1. How Parameters of our Grid Cell Model Can
Impact Place Cells
This work expands previous work on GC (Gaussier et al., 2007)
showing how GC patterns can be processed by a competitive
learning mechanism (WTA) to give rise to place cell activity. The
size of the resulting place fields can be modulated by the dis-
cretization factor of the place integration field and the number
of GC used to generate such place cells. The place field size is an
important parameter for place-action navigation since it defines
how far from the exact learned position the associated movement
will be generated, namely the generalization property of the place
cell/action mechanism.

4.2.2. Multimodal Place Cell Model
As previously explained, all grids present binary fields (activated
or not) so that the pattern generated by the conjunction of three
grids is a three-steps stair shape. Narrow place cells are treated
as if there were no proximity distance between them. From the
study of the parameters for our GC model, we learned that one
could get larger place fields but it requires a very large num-
ber of GC to get a correct resolution. We can argue that bio-
logical systems benefit from a large number of GC with dif-
ferent characteristics allowing to generate a natural continuity
and these large place fields. Simulations using a large number
of GC advocate our claim (see Figures 9.1,9.2). Nevertheless,
considering the computational aspects, we chose to keep only 3
different grid networks (generating our three-steps stair shaped
activity) and to generate analog activity by adding lateral con-
nections between the grid related GC (GC coding for the same
spacing). This technique allows spreading activities field over
neighboring cells by using a torus topology (McNaughton et al.,
2006), and so generates continuity (see Figure 4). Yet, in this
case, our model looses the ability to distinguish between two near
places if the distance between them is smaller than the mask
size.

Even, if a simple competitive learning of GC is able to give rise
to place cell activity it is not enough to explain hippocampal place
cell activity. Indeed, these place cells are also driven by visual
input and input of other modalities (odor, tactile...) and they do
not seem to be of equal importance (Maaswinkel and Whishaw,
1999). We thus presented a new robotic architecture for the emer-
gence of place cells from both vMEC (VPC) and dMEC (Pred-
VPC) inputs. In this model a simple associative learning allows
GC activities to predict VPC and to merge both modalities in a
common representation. Note that in the proposed model GC
responses are associated with VPC but a reverse association is
also plausible (prediction of the grid patterns from VPC). In our
model, PI recalibration is based on such an association (even if
applied directly to PI and not to GC).

4.2.3. Solving a Visual Ambiguity Problem
As mentioned in introduction, merging allothetic, and idiothetic
information is not new in robotics, for instance in Martinelli et al.
(2007) the authors present a model relying on an EKF (McElhoe,
1966) to merge the observation coming from a laser range sen-
sor with the robot odometry. Numerous works based on other

methods (like particle filter) can also be found in Thrun (2003)
and Thrun et al. (2005). Similar fusion are also be described in
several bio-inspired robot architectures (Filliat, 2003). However,
little is known about how exactly such fusion is processed in ani-
mal brain and what is the role played by each input according
to the navigational behavior of the animal. Thus, we also provide
in this paper a very simple model showing that our GC model
can also be used as an input to perform and to study such fusion.
Like in other studies, the resulting multimodal place code is more
robust than place code based on vision only as it reduces visual
ambiguities. Indeed, in Experiments (8–11), the two rooms of
our laboratory shared a lot of similarities so that our visual-only
based recognition system was subject to perceptual ambiguities.
This is the major problem we encountered while the robot tried
to visually localize itself in a cue-redundant environment. It is
not particularly annoying for neighbor places whose cells share
a similar sensori-motor behavior (i.e., same associated action
and same proposed movement direction). Nevertheless, it can be
more dramatic when an ambiguity appears between two close
place cells that should be associated with opposite movement
directions (for instance, when the robot learns a path with sharp
curvatures).

Hence, results show that the visual recognition system allows
a great generalization capability (large place field) but presents
small perception mistakes due to cue redundancy. Indeed some
VPC fire in 2 or 3 different places in the environment.

In contrary, PredVPCs computed from GC present well-
defined place fields without any ambiguity. But they are subject
to the cumulative errors of PI. This results in a very precise dis-
crimination for small scales but a shifted localization for large
scales.

Because of the complementary nature of those two modal-
ities (absolute vs. relative), they present supplementary char-
acteristics that can be used to generate robust localization. As
expected, results point out that merging two modalities reduces
uncorrelated activities and thus allows getting correct localization
without any ambiguity. Finally, MPC are robust and keep large
generalization properties 3.

4.2.4. Solving the Kidnapping Problem
Kidnapping Experiments (10, 11) results underline how the dif-
ferent elements of our recognition system behave when the robot
is suddenly teleported to a different place. This kidnapping allows
putting in conflict inputs of the MPC. By design, kidnapping
impacts PI but does not disturb VPC since the visual recogni-
tion system quickly localizes the robot after the kidnapping event.
MPC can thus benefit from this VPC activity and give a coherent
response quickly.

Once kidnapped, grid recognition stays totally wrong until a
recalibration signal comes from vision. This signal is triggered
when the recognition level of the winning VPC meets several
conditions. We chose to trigger the recalibration according to

3A video demonstrating this architecture performing a path fol-
lowing task at the “Ecole polytechnique de Palaiseau” is available
at this address: http://www.etis.ensea.fr/~neurocyber/Videos/homing/
Navigation_Polytechnique_Jauffret_2011_v2.avi
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particular thresholds on VPC activity for simplicity. Even if it is
not biologically plausible, this mechanism allows getting a cor-
rect localization within the first meters following the kidnap-
ping. Moreover, as previously mentioned, other modalities can be
taken into account to trigger this recalibration and little is known
on these mechanisms.

Future work will investigate how our model behaves when the
robot faces radical environmental changes. Strong visual changes
can occur in real dynamical environments when for example peo-
ple move, objects are displaced or when doors are opened or
closed. How can a Human get a coherent spatial recognition in
these conditions ? For instance, what happens when two previ-
ously and separately explored environments become linked (a
door is opened) ? How is it possible to merge GC location infor-
mation based on different starting points? Note that these ques-
tions are also related to the closing loop problem in robotic simul-
taneous localization and mapping. Based on our current model,
we will investigate the effect of the NLMS learning rate parame-
ter over the spatial response of our place cells. We believe such
a learning rule should stabilize the learning in a coherent set of
associations since if two neighbor place cells propose simulta-
neously to recalibrate the PI field with two different profiles an
averaged profile can be learned (if the profiles are not too far
away) or one of them can win (bifurcation behavior related to
the dynamical properties of the neural fields Amari, 1977) lead-
ing to a filtering and a stabilization of the different coordinate
systems.

5. Conclusion

In this paper, we have first shown a neural architecture that can
take into account experimental results of GC firing properties on
a real robot. We demonstrated the need for a calibration mecha-
nism driven by a periodic homing behavior to keep coherent and
precise grid-like properties. We then generalized this calibration
mechanism not only to the goal location but also to any VPC
learned during a path. In previous work (Gaussier et al., 2007),
we showed how GC activity could be merged into place cells by a
simple competitive learning rule. But resulting place cells exhib-
ited very narrow place fields with no generalization properties.
This raises the issue about how such mechanism could be used
by animals to navigate in their environment. In this paper, we
claim that these generalization properties could emerge from the
huge number of existing GC in the different layer of dMEC. Sim-
ulation of a large number of GC shows how the discretization
factor and the number of GC can control the size of the place
fields. An alternative solution would be to use lateral diffusion of
activity between GC having the same spacing (in a way similar
to the lateral interactions between cortical columns in the visual
system for instance). Neurobiological studies involving selective
inactivation of lateral connections could perhaps help to decide
if one of these hypotheses is incorrect. Finally, we presented a
new robotic architecture for the emergence of place cells from
both vMEC and dMEC inputs in order to study the behavioral
robustness of our GC. Even if this kind of fusion is not new, our
work show how a simple merging mechanism based on condi-
tional association of VPC and GC can give rise to robust MPC.

Moreover, this model allows studying the activity of place cells
coming from both sources of information. Future studies will
focus on the effect of the weight of each information source over
the robustness of MPC. How these weights could be learned on-
line according to an evaluation of the recognition accuracy of
each source has also to be addressed.

In conclusion, experiments performed with a real robot have
underlined the need for taking into account sensory-motor
behaviors to analyze the performances of a GC model. The need
of closing the sensory-motor loop implies some important con-
straints on the model coherence since the different data flows
must use the same coding to be merged. The robotics experi-
ments have enlighten the need of GC redundancy to avoid impor-
tant errors in the place recognition computed from the GC. As a
matter of fact, if the GC are binary, a given GC coding for a long
distance spacing will have the same impact on the place recogni-
tion than a grid associated to a short spacing. This induces that
noise on the GC can generate with the same probability small
or very large errors in the place estimation since one bit of error
(one neuron activated or not) could be associate to a very large or
very small grid. Adding redundancy (using a very large popula-
tion of GC) suppresses this issue since neurons associated to large
grids should be more represented in dMEC than neurons associ-
ated to small grids. Adding lateral diffusions on the grids relaxes
also the constraints on the number of grids necessary to obtain
place fields with good generalization properties. The notion of
generalization capabilities is usually absent from GC and place
cells models since this notion is related, in our case, to behavioral
constraints: learning an homing behavior or a route as a sensory-
motor attraction basin. Of course, no one can be sure that the
animals navigate using such simple competitive sensory-motor
strategies. Yet, one can imagine more complex strategies should
face harder problems and thus our criterions to build robust GC
and place cells should be considered when building new mod-
els of GC or place cells. Moreover, our model suggests that the
GC effect is related to a projection/compression property of the
cortical or sub-cortical inputs arriving onto the entorhinal cor-
tex. This property can apply to all kinds of sensory information
(visual, auditory, tactile...) and could be primarily used as a way
to allow the hippocampus to code for any cortical activity and
to detect/predict the transitions between them (see our model of
transition cells in the hippocampus Gaussier et al., 2002). Since
the number of neurons in EC (the entorhinal cortex, the main
entrance to the hippocampus) is only a fraction of the number of
neurons in the cortex (from 1/29 to 1/2500 for rats and humans,
respectively4). We can estimate that an important compression
factor must be used to represent any cortical activity onto EC2
the superficial layers of the EC (which represents less than 1/10 of
the EC neurons). This implies a large number of cortical neurons
project onto the same EC neurons. To allow the hippocampus to
perform novelty detection and fast learning, it is necessary that
for the detection of correlated cortical activities, these activities

4If we consider rats have roughly 20,000,000 cortical neurons and 690,000 EC neu-
rons, while in the human brain, we would have around 20,000,000,000 cortical
neurons for 8,000,000 EC neurons (Andersen et al., 2006).
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do not project on the same neuron. Since, uncorrelated sources
of information cannot be known in advance (their status can
change according to the task) one simple solution is to use dif-
ferent random projections using for instance prime modulo for
maximizing the efficiency of the coding while allowing simple
Hebbian learning rule to be used to learn and detect correlation in
the hippocampus. Hence, our model can be seen as a caricature of
what could be the projections from the associative cortical areas
to EC and the hippocampus. It represents also an interesting way
for autonomous robots to allow fast and efficient detection and
learning of state transition.
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6. Appendix

6.1. Model Parameters
Parameters for visual keypoints extraction:

Parameter Value

σ1 5.0

σ2 2.0

Mask size 10

Threshold 5

Competition radius 18

Log-polar transform parameters:

Parameter Value

Circular image radius 18

Panorama parameters:

Parameter Value

Number of images in a panorama 15

Panorama field of view 360

Parameters for vision neural networks:

Parameter Value

Local view size 16×16 pixels

Number of landmarks extracted per image 5

Landmarks network size 3000 neurons

PC network size 25 neurons

Parameters for motor control and path integration:

Parameter Value

Action layer (Neural field) size 361 neurons

Path Integration (PI) field size 121 neurons

PI Recalibration, absolute threshold 0.88

PI Recalibration, relative threshold 0.38

6.2. Experiment parameters
Robotic platform:

Parameter Value

Robotic platform Robulab 10 from
Robosoft

Robot width 40 cm

Robot height 1 m

Number of ultrasound sensors 10

Position of ultrasound sensors Front: 6 ; Back: 4.

Sensors sensitivity From 1 cm to 40 cm.

Driven wheels total: 2 ; left: 1 ; right:
1

Free wheels total: 2 ; front: 1 ;
back: 1

Odometry resolution 1 cm.

Robot linear speed around 20 cm/s

Magnetic compass resolution: ±3◦ Embedded CPU Intel I5 (2.40 Ghz).

Camera resolution 320 × 240 pixels.

Grid cells parameters for Experiments (1–5) in the circular enclo-
sure of 2 m:

Grid parameter used Number of neurons

Small grid: 2×2 = 4 neurons

Middle grid: 3×3 = 9 neurons

Big grid: 5×5 = 25 neurons

α parameter in PI : 0.02

Grid cells parameters used in simulation Experiments (6–7):

Grid parameter used Number of neurons

Modulo 1: 60×121 = 7260 neurons

Modulo 2: 10×121 = 4840 neurons

Modulo 3: 30×121 = 3630 neurons

Modulo 4: 24×121 = 2904 neurons

Modulo 5: 20×121 = 2420 neurons

Modulo 6: 15×121 = 1815 neurons

Modulo 7: 12×121 = 1452 neurons

Grid cells parameters for experiments performed in two rooms
and a corridor of our laboratory (8–11):

Grid parameter used Number of neurons

Small grid: 13×13 = 169 neurons

Middle grid: 17×17 = 289 neurons

Big grid: 19×19 = 361 neurons

α parameter in PI : 0.02

Path integration and recalibration fields:

Path Integration field (D) size : 121 neurons

Recalibration field size : 121 neurons

Elementary movement field (V) size : 121 neurons

VPC activity thresholds for path integration recalibration

Absolute threshold : 0.88

Activity difference between two most activated VPC
(relative threshold):

0.38
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